Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties.

Identifieur interne : 000885 ( Main/Exploration ); précédent : 000884; suivant : 000886

Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties.

Auteurs : Yann Mathieu [France] ; Pascalita Prosper ; Marc Buée ; Stéphane Dumarçay ; Frédérique Favier ; Eric Gelhaye ; Philippe Gérardin ; Luc Harvengt ; Jean-Pierre Jacquot ; Tiphaine Lamant ; Edgar Meux ; Sandrine Mathiot ; Claude Didierjean ; Mélanie Morel

Source :

RBID : pubmed:23007392

Descripteurs français

English descriptors

Abstract

Glutathione S-transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes. A new fungal specific class of GST has been highlighted by genomic approaches. The biochemical and structural characterization of one isoform of this class in Phanerochaete chrysosporium revealed original properties. The three-dimensional structure showed a new dimerization mode and specific features by comparison with the canonical GST structure. An additional β-hairpin motif in the N-terminal domain prevents the formation of the regular GST dimer and acts as a lid, which closes upon glutathione binding. Moreover, this isoform is the first described GST that contains all secondary structural elements, including helix α4' in the C-terminal domain, of the presumed common ancestor of cytosolic GSTs (i.e. glutaredoxin 2). A sulfate binding site has been identified close to the glutathione binding site and allows the binding of 8-anilino-1-naphtalene sulfonic acid. Competition experiments between 8-anilino-1-naphtalene sulfonic acid, which has fluorescent properties, and various molecules showed that this GST binds glutathionylated and sulfated compounds but also wood extractive molecules, such as vanillin, chloronitrobenzoic acid, hydroxyacetophenone, catechins, and aldehydes, in the glutathione pocket. This enzyme could thus function as a classical GST through the addition of glutathione mainly to phenethyl isothiocyanate, but alternatively and in a competitive way, it could also act as a ligandin of wood extractive compounds. These new structural and functional properties lead us to propose that this GST belongs to a new class that we name GSTFuA, for fungal specific GST class A.

DOI: 10.1074/jbc.M112.402776
PubMed: 23007392
PubMed Central: PMC3493941


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties.</title>
<author>
<name sortKey="Mathieu, Yann" sort="Mathieu, Yann" uniqKey="Mathieu Y" first="Yann" last="Mathieu">Yann Mathieu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Université de Lorraine, Interactions Arbre-Microorganismes, UMR 1136, Institut Fédératif de Recherche 110 EFABA, Vandoeuvre-lès-Nancy F-54506, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, Interactions Arbre-Microorganismes, UMR 1136, Institut Fédératif de Recherche 110 EFABA, Vandoeuvre-lès-Nancy F-54506</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Prosper, Pascalita" sort="Prosper, Pascalita" uniqKey="Prosper P" first="Pascalita" last="Prosper">Pascalita Prosper</name>
</author>
<author>
<name sortKey="Buee, Marc" sort="Buee, Marc" uniqKey="Buee M" first="Marc" last="Buée">Marc Buée</name>
</author>
<author>
<name sortKey="Dumarcay, Stephane" sort="Dumarcay, Stephane" uniqKey="Dumarcay S" first="Stéphane" last="Dumarçay">Stéphane Dumarçay</name>
</author>
<author>
<name sortKey="Favier, Frederique" sort="Favier, Frederique" uniqKey="Favier F" first="Frédérique" last="Favier">Frédérique Favier</name>
</author>
<author>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
</author>
<author>
<name sortKey="Gerardin, Philippe" sort="Gerardin, Philippe" uniqKey="Gerardin P" first="Philippe" last="Gérardin">Philippe Gérardin</name>
</author>
<author>
<name sortKey="Harvengt, Luc" sort="Harvengt, Luc" uniqKey="Harvengt L" first="Luc" last="Harvengt">Luc Harvengt</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Lamant, Tiphaine" sort="Lamant, Tiphaine" uniqKey="Lamant T" first="Tiphaine" last="Lamant">Tiphaine Lamant</name>
</author>
<author>
<name sortKey="Meux, Edgar" sort="Meux, Edgar" uniqKey="Meux E" first="Edgar" last="Meux">Edgar Meux</name>
</author>
<author>
<name sortKey="Mathiot, Sandrine" sort="Mathiot, Sandrine" uniqKey="Mathiot S" first="Sandrine" last="Mathiot">Sandrine Mathiot</name>
</author>
<author>
<name sortKey="Didierjean, Claude" sort="Didierjean, Claude" uniqKey="Didierjean C" first="Claude" last="Didierjean">Claude Didierjean</name>
</author>
<author>
<name sortKey="Morel, Melanie" sort="Morel, Melanie" uniqKey="Morel M" first="Mélanie" last="Morel">Mélanie Morel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23007392</idno>
<idno type="pmid">23007392</idno>
<idno type="doi">10.1074/jbc.M112.402776</idno>
<idno type="pmc">PMC3493941</idno>
<idno type="wicri:Area/Main/Corpus">000801</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000801</idno>
<idno type="wicri:Area/Main/Curation">000801</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000801</idno>
<idno type="wicri:Area/Main/Exploration">000801</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties.</title>
<author>
<name sortKey="Mathieu, Yann" sort="Mathieu, Yann" uniqKey="Mathieu Y" first="Yann" last="Mathieu">Yann Mathieu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Université de Lorraine, Interactions Arbre-Microorganismes, UMR 1136, Institut Fédératif de Recherche 110 EFABA, Vandoeuvre-lès-Nancy F-54506, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Lorraine, Interactions Arbre-Microorganismes, UMR 1136, Institut Fédératif de Recherche 110 EFABA, Vandoeuvre-lès-Nancy F-54506</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Prosper, Pascalita" sort="Prosper, Pascalita" uniqKey="Prosper P" first="Pascalita" last="Prosper">Pascalita Prosper</name>
</author>
<author>
<name sortKey="Buee, Marc" sort="Buee, Marc" uniqKey="Buee M" first="Marc" last="Buée">Marc Buée</name>
</author>
<author>
<name sortKey="Dumarcay, Stephane" sort="Dumarcay, Stephane" uniqKey="Dumarcay S" first="Stéphane" last="Dumarçay">Stéphane Dumarçay</name>
</author>
<author>
<name sortKey="Favier, Frederique" sort="Favier, Frederique" uniqKey="Favier F" first="Frédérique" last="Favier">Frédérique Favier</name>
</author>
<author>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
</author>
<author>
<name sortKey="Gerardin, Philippe" sort="Gerardin, Philippe" uniqKey="Gerardin P" first="Philippe" last="Gérardin">Philippe Gérardin</name>
</author>
<author>
<name sortKey="Harvengt, Luc" sort="Harvengt, Luc" uniqKey="Harvengt L" first="Luc" last="Harvengt">Luc Harvengt</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Lamant, Tiphaine" sort="Lamant, Tiphaine" uniqKey="Lamant T" first="Tiphaine" last="Lamant">Tiphaine Lamant</name>
</author>
<author>
<name sortKey="Meux, Edgar" sort="Meux, Edgar" uniqKey="Meux E" first="Edgar" last="Meux">Edgar Meux</name>
</author>
<author>
<name sortKey="Mathiot, Sandrine" sort="Mathiot, Sandrine" uniqKey="Mathiot S" first="Sandrine" last="Mathiot">Sandrine Mathiot</name>
</author>
<author>
<name sortKey="Didierjean, Claude" sort="Didierjean, Claude" uniqKey="Didierjean C" first="Claude" last="Didierjean">Claude Didierjean</name>
</author>
<author>
<name sortKey="Morel, Melanie" sort="Morel, Melanie" uniqKey="Morel M" first="Mélanie" last="Morel">Mélanie Morel</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anilino Naphthalenesulfonates (pharmacology)</term>
<term>Binding Sites (MeSH)</term>
<term>Binding, Competitive (MeSH)</term>
<term>Biotechnology (methods)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Crystallography, X-Ray (methods)</term>
<term>Glutathione (chemistry)</term>
<term>Glutathione Transferase (chemistry)</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Lignin (MeSH)</term>
<term>Mass Spectrometry (methods)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phanerochaete (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Isoforms (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anilino-naphtalènesulfonates (pharmacologie)</term>
<term>Biotechnologie (méthodes)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Cristallographie aux rayons X (méthodes)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Fixation compétitive (MeSH)</term>
<term>Glutathion (composition chimique)</term>
<term>Glutathione transferase (composition chimique)</term>
<term>Glutathione transferase (métabolisme)</term>
<term>Isoformes de protéines (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Lignine (MeSH)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Sites de fixation (MeSH)</term>
<term>Spectrométrie de masse (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutathione</term>
<term>Glutathione Transferase</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione Transferase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anilino Naphthalenesulfonates</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutathion</term>
<term>Glutathione transferase</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biotechnology</term>
<term>Crystallography, X-Ray</term>
<term>Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathione transferase</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biotechnologie</term>
<term>Cristallographie aux rayons X</term>
<term>Spectrométrie de masse</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Anilino-naphtalènesulfonates</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Binding, Competitive</term>
<term>Cloning, Molecular</term>
<term>Lignin</term>
<term>Molecular Sequence Data</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Isoforms</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Clonage moléculaire</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Fixation compétitive</term>
<term>Isoformes de protéines</term>
<term>Liaison aux protéines</term>
<term>Lignine</term>
<term>Sites de fixation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutathione S-transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes. A new fungal specific class of GST has been highlighted by genomic approaches. The biochemical and structural characterization of one isoform of this class in Phanerochaete chrysosporium revealed original properties. The three-dimensional structure showed a new dimerization mode and specific features by comparison with the canonical GST structure. An additional β-hairpin motif in the N-terminal domain prevents the formation of the regular GST dimer and acts as a lid, which closes upon glutathione binding. Moreover, this isoform is the first described GST that contains all secondary structural elements, including helix α4' in the C-terminal domain, of the presumed common ancestor of cytosolic GSTs (i.e. glutaredoxin 2). A sulfate binding site has been identified close to the glutathione binding site and allows the binding of 8-anilino-1-naphtalene sulfonic acid. Competition experiments between 8-anilino-1-naphtalene sulfonic acid, which has fluorescent properties, and various molecules showed that this GST binds glutathionylated and sulfated compounds but also wood extractive molecules, such as vanillin, chloronitrobenzoic acid, hydroxyacetophenone, catechins, and aldehydes, in the glutathione pocket. This enzyme could thus function as a classical GST through the addition of glutathione mainly to phenethyl isothiocyanate, but alternatively and in a competitive way, it could also act as a ligandin of wood extractive compounds. These new structural and functional properties lead us to propose that this GST belongs to a new class that we name GSTFuA, for fungal specific GST class A.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23007392</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>01</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>287</Volume>
<Issue>46</Issue>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties.</ArticleTitle>
<Pagination>
<MedlinePgn>39001-11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M112.402776</ELocationID>
<Abstract>
<AbstractText>Glutathione S-transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes. A new fungal specific class of GST has been highlighted by genomic approaches. The biochemical and structural characterization of one isoform of this class in Phanerochaete chrysosporium revealed original properties. The three-dimensional structure showed a new dimerization mode and specific features by comparison with the canonical GST structure. An additional β-hairpin motif in the N-terminal domain prevents the formation of the regular GST dimer and acts as a lid, which closes upon glutathione binding. Moreover, this isoform is the first described GST that contains all secondary structural elements, including helix α4' in the C-terminal domain, of the presumed common ancestor of cytosolic GSTs (i.e. glutaredoxin 2). A sulfate binding site has been identified close to the glutathione binding site and allows the binding of 8-anilino-1-naphtalene sulfonic acid. Competition experiments between 8-anilino-1-naphtalene sulfonic acid, which has fluorescent properties, and various molecules showed that this GST binds glutathionylated and sulfated compounds but also wood extractive molecules, such as vanillin, chloronitrobenzoic acid, hydroxyacetophenone, catechins, and aldehydes, in the glutathione pocket. This enzyme could thus function as a classical GST through the addition of glutathione mainly to phenethyl isothiocyanate, but alternatively and in a competitive way, it could also act as a ligandin of wood extractive compounds. These new structural and functional properties lead us to propose that this GST belongs to a new class that we name GSTFuA, for fungal specific GST class A.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mathieu</LastName>
<ForeName>Yann</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Université de Lorraine, Interactions Arbre-Microorganismes, UMR 1136, Institut Fédératif de Recherche 110 EFABA, Vandoeuvre-lès-Nancy F-54506, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Prosper</LastName>
<ForeName>Pascalita</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Buée</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dumarçay</LastName>
<ForeName>Stéphane</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Favier</LastName>
<ForeName>Frédérique</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gelhaye</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gérardin</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harvengt</LastName>
<ForeName>Luc</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jacquot</LastName>
<ForeName>Jean-Pierre</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lamant</LastName>
<ForeName>Tiphaine</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meux</LastName>
<ForeName>Edgar</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mathiot</LastName>
<ForeName>Sandrine</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Didierjean</LastName>
<ForeName>Claude</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morel</LastName>
<ForeName>Mélanie</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>JQ974949</AccessionNumber>
</AccessionNumberList>
</DataBank>
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>4F03</AccessionNumber>
<AccessionNumber>4G19</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C515594">8-anilino-1-naphthalenesulfonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000817">Anilino Naphthalenesulfonates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000817" MajorTopicYN="N">Anilino Naphthalenesulfonates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001667" MajorTopicYN="N">Binding, Competitive</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001709" MajorTopicYN="N">Biotechnology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23007392</ArticleId>
<ArticleId IdType="pii">M112.402776</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M112.402776</ArticleId>
<ArticleId IdType="pmc">PMC3493941</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biopolymers. 2000-2001;56(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11582571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Dec;66(23):3711-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19662500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 22;283(34):23062-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jul 18;283(29):20268-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18492666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 11;275(32):24798-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10783391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 18;286(11):9162-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Jun 1;375(6530):397-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7760932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Evol Biol. 2011;2011:938308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22164343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol Eng. 2006 Sep;23(4):149-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16839810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1998 Mar 15;6(3):309-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9551553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Nov 6;273(45):29915-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9792709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2005 Jan;39(1):107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6345-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10823915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Apr;42(4):319-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2006 Jan;15(1):208-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Jan 19;255(2):289-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8551521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2005;45:51-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15822171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMB Rep. 2012 May;45(5):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22617449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Mar;1764(3):535-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16427819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Jul 5;232(1):192-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8331657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 Jan 1;242(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15621414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2003 May 2;1621(2):226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12726999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3320-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e34263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1993 May 24;323(1-2):135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8495726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Sep 7;133(35):14109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21786801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1995 Aug;19(2):196-8, 200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8527135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Mar 15;220(3):645-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8143720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Jun;68(6):2802-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12039735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):49-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14646132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 21;278(47):47190-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2009 Nov 15;19(22):6326-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19822425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2005 Sep;68(5):673-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15868144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Feb 7;326(1):151-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12547198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Jun;59(Pt 6):1043-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jul 20;310(4):907-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11453697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(13):3621-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18836188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Aug 27;291(4):913-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10452896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Feb 13;40(6):1567-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11327815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 May;102(1):29-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8108497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(1):104-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Mar;185(6):1768-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12618439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):774-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Feb 24;287(9):6072-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 24;276(34):32177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2006 Sep 1;398(2):187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2012 Jun;23(3):343-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22102096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18463136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 3;284(14):9299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Oct;5(15):3919-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16217726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Dec 19;384(3):641-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18845158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Feb 26;445(2-3):347-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10094487</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<orgName>
<li>Université de Lorraine</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Buee, Marc" sort="Buee, Marc" uniqKey="Buee M" first="Marc" last="Buée">Marc Buée</name>
<name sortKey="Didierjean, Claude" sort="Didierjean, Claude" uniqKey="Didierjean C" first="Claude" last="Didierjean">Claude Didierjean</name>
<name sortKey="Dumarcay, Stephane" sort="Dumarcay, Stephane" uniqKey="Dumarcay S" first="Stéphane" last="Dumarçay">Stéphane Dumarçay</name>
<name sortKey="Favier, Frederique" sort="Favier, Frederique" uniqKey="Favier F" first="Frédérique" last="Favier">Frédérique Favier</name>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
<name sortKey="Gerardin, Philippe" sort="Gerardin, Philippe" uniqKey="Gerardin P" first="Philippe" last="Gérardin">Philippe Gérardin</name>
<name sortKey="Harvengt, Luc" sort="Harvengt, Luc" uniqKey="Harvengt L" first="Luc" last="Harvengt">Luc Harvengt</name>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
<name sortKey="Lamant, Tiphaine" sort="Lamant, Tiphaine" uniqKey="Lamant T" first="Tiphaine" last="Lamant">Tiphaine Lamant</name>
<name sortKey="Mathiot, Sandrine" sort="Mathiot, Sandrine" uniqKey="Mathiot S" first="Sandrine" last="Mathiot">Sandrine Mathiot</name>
<name sortKey="Meux, Edgar" sort="Meux, Edgar" uniqKey="Meux E" first="Edgar" last="Meux">Edgar Meux</name>
<name sortKey="Morel, Melanie" sort="Morel, Melanie" uniqKey="Morel M" first="Mélanie" last="Morel">Mélanie Morel</name>
<name sortKey="Prosper, Pascalita" sort="Prosper, Pascalita" uniqKey="Prosper P" first="Pascalita" last="Prosper">Pascalita Prosper</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Mathieu, Yann" sort="Mathieu, Yann" uniqKey="Mathieu Y" first="Yann" last="Mathieu">Yann Mathieu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000885 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000885 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23007392
   |texte=   Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23007392" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020